
A Quantitative Approach to Analyzing Architectures
in the Presence of Uncertainty

Harrison Strowd David Garlan

July 2009
CMU-CS-09-120

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The concepts and techniques that underlie architectural analysis are well un-
derstood in the research community. However, many of these approaches do
not incorporate uncertainty into their techniques. This forces the architect to
specify precisely properties that are not well defined or to analyze the system
qualitatively, providing an imprecise representation of the properties the system
will exhibit. This paper presents a technique for analyzing architectural models
that exhibit probabilistic behavior and discusses the systemic properties that
can be identified through this form of analysis.

This work is supported in part by the Office of Naval Research (ONR), United
States Navy, N000140811223 as part of the HSCB project under OSD, by the US
Army Research Office (ARO) to CyLab under grant numbers DAAD19-02-1-0389 and
DAAD19-01-1-0485, and by the National Science Foundation under Grants No. CNS-
084701 and IIS-0534656. The views and conclusions described here are those of the
authors and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the ONR, the ARO, the NSF, the US government, or any other
entity.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
A Quantitative Approach to Analyzing Architectures in the Presence of
Uncertainty

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

33

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Over the past two decades a variety of techniques have been developed to spec-
ify and analyze the behavior of a system at an architectural level of abstrac-
tion. Such analyses are as diverse as identifying potential deadlocks between
components, analyzing real-time behavior, detecting violations in security flow
policies, discovering performance bottlenecks, and guaranteeing conformance of
a system’s architecture to an architectural style or product line framework.

One of the important challenges for architecture analysis is appropriately
handling uncertainty. Uncertainty can arise in a variety of ways. Parts of the
system or its environment may be outside the control of the system designer.
The exact behavior or properties of architectural elements may not be known at
the time of architectural design since they depend on detailed design decisions
that will occur later. Or, to manage complexity the architect may use a high
level of modeling within which the precise behavior must be abstracted.

Today there are typically two general-purpose alternatives for dealing with
uncertainty in architectural models. One, you can pick a representative model
and behavior and hope that later elaborations do not violate those assumptions.
For example, you might posit a certain specific reliability of a server and perform
analysis based on that assumption. Two, you can use nondeterminism to retain
flexibility (and abstraction). By leaving the behavior unconstrained you allow
for later refinement. For example, your model might specify that a server can
fail nondeterministically.

Unfortunately, neither of these alternatives is adequate. For the first ap-
proach, invalid assumptions can render further analysis useless or require ex-
pensive re-analysis and design at a later date. For the second approach, analyses
must necessarily be conservative (since behavior is largely unconstrained), re-
quiring the architect to address problems that may not actually occur or that
will occur so infrequently that they need not occupy center stage.

In this paper we explore a third alternative: make uncertainty explicit and
quantitative. That is, we associate specific numerical measures of uncertainty
with behavior. This is done through the use of an existing probabilistic behavior
specification language, coupled with tools to check properties of such specifica-
tions. In particular, we address three questions: How can we incorporate proba-
bilistic behavior into architectural specifications? What kind of architecturally-
relevant properties can be checked over these specifications? How can tools be
leveraged to provide automated assistance with this analysis?

In the remainder of this paper we summarize our initial results in answering
these questions and illustrate the ideas in terms of a small case study. We begin
by addressing the shortcomings of current architectural analysis techniques,
highlight the key characteristics of an appropriate analysis technique in light of
the three questions above, and discuss our approach and the broader conclusions
to be drawn from this research.

1

2 Motivation

To illustrate the issues associated with modeling uncertainty at an architectural
level of abstraction, consider a simplified version of a web search engine server
cluster, consisting of a load balancing machine and a number of web sever ma-
chines (The basis for this model is the Google server cluster architecture as
described in [BDH03].). The architecture of the system is illustrated in Figure
1. Following a client-server architectural style, the load balancer receives search
requests from the users and assigns them to the web servers to be processed.
However, in this system web servers are known to be unreliable and can fail
unexpectedly.

The example architecture includes two types of components and two types
of connectors.1 The load balancing component receives a search request via
the external connector to the user. It then forwards this request to a web
server component via the internal connector to the appropriate device. For this
example, as an architect we would like to be able to reason about the overall
reliability of the system in the face of individual web server failures, the latency
of requests in the system, and the average queue length for each web server.

Using existing architectural analysis techniques, we can employ one of the
two traditional tactics discussed above. We may attempt to specify the explicit
conditions under which a web server will fail, or even simply the failure rate
of those servers. Unfortunately, the conditions that cause a web server to fail
are based on a diverse set of low-level or environmental events. At the time of
developing the architecture of the system, we would likely not know the details
that influence these conditions, nor be able to predict their occurrence. This
forces us to specify a possibly unrealistic set of conditions or values related to
the failure of a web server, rendering our analysis less than useful.

On the other hand, we may choose to specify only the most abstract con-
ditions that result in a web server failure and allow the model to fail nonde-
terministically. This forces us to neglect information such as the fact that we
may know a priori that web server failures are relatively rare, even if we don’t
know their exact failure rate. Under these assumption of unbounded nonde-
terminism, we would also have to consider the possibility that all web servers
may fail “simultaneously” as a reasonable outcome, even though the likelihood
of this happening is extremely rare. In turn, this might lead the architect to
design in special mechanisms to account for this possibility – likely with high
development cost implications.

1For the purposes of this paper we focus on the dynamic architectural perspective, in
which an architecture is represented as a set of components and the connectors among those
components [SG96]. This perspective is primarily used to reason about the runtime qualities
of the system, such as performance, reliability, etc. [CBB+03].

2

Figure 1: Architecture of the simplified web server example.

3 Requirements

Given the limitations of current approaches, outlined above, we argue that a
better solution should include at least the following elements: First, the ap-
proach must support modeling at an architectural level of abstraction in order
to understand the overall system behavior in terms of the key architectural de-
sign decisions (such as how to replicate servers, what protocols to use to detect
failure, etc.). Second, to analyze the qualities of the system, we must be able
to specify and verify architectural properties that explicitly capture the uncer-
tainty inherent in the model. Finally, the analysis task is often too complex to
be performed manually and hence requires appropriate tool support.

3

3.1 Architecture Modeling

To facilitate this form of modeling, the modeling language must allow the archi-
tect to capture the architectural elements of the system, to define its abstract
behavior in terms of architecturally-significant events, to assign probabilities to
those events, and to associate cost/reward values with the states and events of
the model.

The key architectural elements to be modeled are the components and con-
nectors of the system. Such elements can be modeled in a variety of ways
depending on the level of detail and specificity required. In an architectural
model many implementation the details are abstracted away in order to fo-
cus on the key characteristics to be analyzed about the system. The modeling
language must also support the description of abstract behavior. This can be
done using any number of behavior specification languages, including process
algebras, state machines, relational algebras, etc.

Beyond raw behavior, the modeling language must support the explicit de-
scription of uncertainty. Specifically, by allowing for probabilities to be quan-
titatively associated with the conditions under which architecturally-relevant
events occur in the system, the architect has far greater control over specifying
the behavior of the model. In turn, the increased control leads to improved
accuracy of the analysis.

Finally, the language must support the architect in defining extra-functional
attributes of the behavior and structure, such as latencies, power consumption,
reliability, etc. These can be done, for example, by associating cost/reward
values with events and states of the model. In terms of the search engine
example, such attributes include the number of active web servers in a given
state, the latency of requests in the system, and the power consumption of each
web server in the system.

3.2 Property Specification

The property specification language determines the kinds of emergent system
behavior that can be analyzed. In considering languages for this purpose, it
is important that they can (a) capture the steady-state behavior of the model,
(b) allow for the analysis of some property in the context of a specific state or
condition, (c) support analysis of the overall costs/rewards, and (d) support the
specification and analysis of both boolean and probabilistic properties.

Steady-state behavior: For many of the dynamic properties being analyzed,
there is often an important difference between the behavior of the system
during start-up and the behavior of the system in its steady state. In the
search engine example, the average number of requests assigned to a web
server will be significantly less during the initial steps of the simulation
than after it has been running for a while. For many systems it is often
more important to understand the behavior of the system without consid-
ering the effects of the initialization period. To handle this, it is important

4

that the property language employed be able to capture the steady-state
properties of the system.

Context-specific behavior: On the other hand, it is often important to an-
alyze the behavior of the system under certain specified conditions. In
the web server example it may be important to know, “when a web server
fails, what is the probability that it will be repaired before any other server
fails?” Such properties attempt to hone in on particular circumstances un-
der which a given property is significant.

Costs and rewards: When analyzing the dynamic properties of a system, as
we are in the search engine example, it is necessary to be able to exam-
ine properties as they change over time. To facilitate this, it is necessary
for the modeling language to allow the architect to assign a cost or re-
ward value to each state or transition, but it is the property specification
language that makes it possible for the architect to reason about these
properties over the entire execution of the system. For the search engine
example, the modeling language allows us to assign a cost to each state
in which a web server is down, and the property specification language
allows the architect to analyze the cumulative or average cost over an en-
tire simulation or set of simulations. This form of analysis provides the
architect insight into the global properties of the system that may not be
directly reflected in its behavior.

Boolean versus probabilistic properties: In probabilistic modeling there
are two types of properties that can be verified: boolean and probabilis-
tic properties. Boolean properties are binary (true or false): they allow
the architect to check whether a given property does or does not hold.
For the search engine example, a relevant boolean property would be, “at
any given time, the probability that all web servers are down is less than
1.00%.” While boolean properties are useful in many scenarios, in other
circumstances we may need to know the specific probability associated
with a given outcome. In reasoning about the search engine, for example,
it may be important to know the probability that all web servers will be
down simultaneously.

Figure 2 lists some examples of the kinds of above properties that can be
used to express the quality attributes of the search engine.2 Both boolean and
probabilistic properties are illustrated in these examples. For the reward-based
properties, the rewards (i.e., extra-functional properties) defined in the model
would be that all web servers are down and the amount of time that each re-
quest spends in the system. The reward-based properties for analysis allow the
architect to understand how the value of these rewards change over the life of
the system.

2Section 10.5 of the Appendix provides a more complete mapping of the quality attributes
to the properties that can be defined by PRISM.

5

Figure 2: Examples for each type of property and the quality attribute that
they relate to.

3.3 Automated Analysis

An appropriate tool to support this kind of analysis must allow the architect
to evaluate the properties described above, scale sufficiently to handle realis-
tic systems, and support the architect in analyzing the tradeoffs made in the
architecture. Automated verification of property specifications is the minimal
criteria for a tool to be applied to this form of analysis. The size of the model
will vary widely, based on the level of detail included in the model and the size
of the system being modeled. To make such analysis tractable, abstractions are
usually required, but such abstractions should not alter the results or detract
from the effectiveness of the analysis. The ability for the tool to model and an-
alyze complex systems will dictate the effectiveness and accuracy of the results
obtained.

In reasoning about a given architecture, it is important for the architect
to be aware of the sensitivity points and tradeoffs being made. In turn, the
tool should facilitate identifying these aspects of the architecture. In the search
engine example, a key sensitivity point is the number of web servers used in
the system. A system with too few web servers will not be able to service all
the requests it receives, but a system with too many web servers will incur
excessive costs. It is important for the architect to identify what the optimal
number of web servers would be in light of the properties of the system. Ideally
a tool would allow the architect to specify a range for the number of web servers
in the system and to check properties for a representative sample of values in
that range. The architect can then choose the value that optimizes business
objectives.

6

Figure 3: A simplified portion of the web server module.

4 Our Approach

Based on the criteria enumerated above, we identified the PRISM probabilistic
model checker as a prime candidate for modeling architectures in the face of
uncertainty. The language used to specify models in PRISM is similar to the
Reactive Modules formalism as described by [AH99]. In this language, there
are three primary types of probabilistic models: discrete-time Markov chains
(DTMCs), continuous-time Markov chains (CTMCs), and Markov decision pro-
cesses (MDPs). DTMCs behave according to the discrete probabilities of the
enabled events in the system at discrete time steps. CTMCs assign rates to the
events of the system and model how these events will occur over time. MDPs
focus on modeling concurrency by combining discrete probabilities with nonde-
terministic behavior [KNP04]. All three types of model are based on the parallel
composition of modules, and allow for the specification of finite-ranging vari-
ables and a set of events over those variables. As we will illustrate later, events
are specified in terms of a name, pre-condition, post-condition, and probability
[HKNP06].

To understand the runtime properties of the search engine example, we use
a CTMC model. Figure 3 shows a portion of the web server module from
this example.3 This module keeps track of the number of requests that have
been assigned to the web server, updating it as requests are assigned to or
returned from a server. The three events of the module represent a request
being assigned to a server, a request being returned from a server, and a server
failing, respectively. Rates have been assigned to the later two events, but not to

3Section 10.1 of the Appendix shows the full version of the model.

7

Figure 4: A sample reward from the search engine model, identifying the amount
of time that all web servers are down simultaneously.

the first, in which case a default rate of 1 is assumed. The time units associated
with the model are not explicitly defined by PRISM, allowing the architect to
equate a single time-step with an appropriate amount of time in light of the
system’s context.

The load balancer module of the example is defined in a similar way. The
interaction between these two modules is handled by synchronous events, such
as the assignment and receipt of requests for a given web server. For these
events to occur, the precondition provided in each module must be satisfied and
the effective rate of the event is the product of the rates of the event in each
module.

To capture the extra-functional qualities of the system we employ the reward
structure mechanism available in PRISM. Figure 4 shows a sample reward from
the search engine model.4 This reward associates a value of 1 with every state
of the model in which all three web servers are simultaneously not active (i.e.,
all have failed). In a CTMC model the reward value of a state is multiplied
by the time spent in that state. Thus if the model spends three consecutive
time-steps in a state in which all web servers have failed the cumulative reward
during that period is 3, allowing the architect to analyze properties about the
total or the average amount of time spent in various states of the model.

PRISM allows for temporal logic properties to be verified against the model.
These properties can be specified using PCTL or CSL,5 extensions of CTL that
account for probabilistic behavior [KNP02]. Using CSL we were able to analyze
the dynamic properties of the search engine example, including reliability and
performance.

To illustrate, Figure 5 shows a representative set of the properties that can
be verified against the search engine model just described.6 The first of these
properties analyzes the steady-state behavior of the model to determine the
average number of requests that will be assigned to a web server. The second
property verifies that when web server 1 fails, the probability that it will be
repaired before another web server fails is at least 75%. The third property
uses two rewards defined in the model: one tracks the cumulative time spent
servicing requests, and the other tracks the total number of requests serviced,

4Section 10.2 of the Appendix shows the complete set of rewards defined for the model.
5PCTL properties are applied to DTMCs and MDPs, while CSL properties are applied to

CTMCs.
6Section 10.3 of the Appendix shows the full set of properties defined for the model.

8

Figure 5: A sample of the properties used to analyze the web server model.

Figure 6: A sample of the output provided when verifying a property.

to determine the average latency of requests in the system. Finally, the last
property analyzes the model to determine the percentage of time that all web
servers in the system will be down simultaneously.7

For each of the properties discussed above PRISM provides feedback in the
form shown in Figure 6. This figure shows the results of the analysis used to
determine the average number of requests assigned to a web server in the system.
The output identifies that the specified property was verified on the model with
the maximum number of requests per web servers set to 3, the request arrival
rate set to 10, and the rate at which web servers process a request set to 5. Using
these parameters, the average number of requests assigned to a web server was
found to be approximately 2.59.

7Section 10.4 of the Appendix provides a more complete range of the properties that can
be specified.

9

Figure 7: A sample of the output provided when running a PRISM experiment.

This indicates that for the majority of the time, each web server has 3 re-
quests assigned to it, the maximum number possible. We can therefore conclude
that the arrival rate is overwhelming the available web servers. This problem
may be the result of a number of factors, including the fact that the load bal-
ancer does not have a sufficient number of web servers at its disposal, the web
servers are not able to process requests fast enough, or the requests are simply
arriving at too high a rate for the system to handle. Determining which ap-
plies, is the job of the architect who, armed with this kind of analysis, can make
rational tradeoffs about ways to address such problems.

However, to gain a better understanding of the options available for decreas-
ing the average number of requests assigned to each web server, the architect
must understand the effect that each variable has on the other variables and
the system as a whole. To gain this understanding, the architect will need to
create a graph similar to Figure 7, detailing the effects of varying the web server
processing rate and the request arrival rate on the average number of requests
assigned to web servers in the system.

Assuming the number of available web servers and the number of requests
that each server can handle is fixed, the architect can manipulate the two rates
to achieve a desired property in the system. For instance, if the system must
ensure that on average less than 2 requests are assigned to a web server, the
architect will need to find a way to decrease the request arrival rate to at most 5
requests per time-step, or increase the rate at which web servers process requests
to at least 10 requests per time-step.

PRISM facilitates the architect in performing this type of analysis by al-
lowing the architect to run experiments. An experiment is a series of property
verifications in which the variables of the model are incremented over a set
range. PRISM runs every permutation of the values in the provided ranges and
outputs the results in a chart, such as the one shown in Figure 7. PRISM allows
the architect to specify the ranges for the variables of the experiment using the
form shown in Figure 8.

10

Figure 8: The form used by PRISM to allow the architect to specify the variables
of an experiment.

5 Performance Considerations

One significant concern for this form of architectural analysis is how well it
scales to meet the needs of realistic systems. For the purposes of this paper,
we have used an extremely simplified web search engine cluster. The question
that then needs to be answered is whether or not PRISM is able to model a
realistic system. To understand the scalability concerns for PRISM, we used the
four properties mentioned above to determine if the model checker is capable of
verifying properties on a more complex model.

To gain this understanding, we varied the number of web servers in the
model, the maximum number of requests assigned to a web server, and the
arrival rate of requests in the system, and verified each property against the
model, tracking the amount of time required for PRISM to verify the property.
We chose to experiment on these three variables because each has a unique effect
on model. Varying the number of web servers affects the number of modules
contained in the model. Varying the maximum number of requests assigned to
a web server affects the number of states required for the web server module.
Varying the arrival rate of requests affects probabilities used to simulate and
verify properties against the model. The results of this experiment are shown
in Figures 9 and 10.

Figure 9 points out that PRISM is not capable of handling the scalability
required to model a realistic web search engine cluster. The average amount
of time required to verify properties against the model increases exponentially
with both the number of web servers and the maximum number of requests per
web server. An actual web search engine cluster would typically have hundreds
of servers and each would service many requests simultaneously. This suggests a

11

Figure 9: Scalability of PRISM in terms of the number of web servers and
requests per web server.

Figure 10: Scalability of PRISM in terms of the request arrival rate.

significant limitation of applying the PRISM model checker to the architectural
analysis of complex systems with uncertainty.

On the other hand, we found an exponential decrease in the time required to

12

verify properties as the arrival rate of requests increased, as shown in Figure 10.
This is consistent with our expectations of the model, as cannot handle more
than three web servers or three requests per web server. Thus, as the request
arrival rate increases the queues will be filled more quickly and the system will
reach a steady state in which all queues are full. In turn, the analysis will finish
faster because the behavior of the model converges faster.

6 Discussion

As we have indicated above, the modeling language, property specification lan-
guage, and tool support used in the architectural modeling of systems with
uncertainty will have a large influence on the effectiveness of the analysis per-
formed on the model. We feel that many of the features provided by the PRISM
probabilistic model checker can be effectively used to capture and analyze such
models. The ability to quantitatively specify the probabilities of the events in
the system and to perform detailed analysis and experiments based on these
probabilities provides the architect with better understanding of their affect on
the underlying properties of the system.

While PRISM has proven to be an effective solution to some of the prob-
lems faced in attempting to analyze such models, it does have its own set of
drawbacks and limitations. As noted above, scalability is a key issue. Even for
our simplified example model, we were forced to keep our variables within small
ranges to prevent state explosion. This is a serious barrier that will need to be
handled in order for this solution to prove useful in industrial settings.

Another limitation imposed by PRISM is the inability to specify the dis-
tribution to be used during the simulation of the model. For CTMC models,
PRISM uses an exponential distribution to simulate variability in the rates of
events. In many cases, the realistic behavior of an event will not be captured
by this distribution, inhibiting the accuracy of the model, and in turn the anal-
ysis. As shown in [CGS07], the ability to control the probabilistic distributions
assigned to events in the system provides meaningful insight into the properties
of the system.

The PRISM modeling language was extremely effective in handling variabil-
ity in the rates and ranges defined for the model, but failed to support variability
of the modules or events defined in the model. In our example, we would like
to be able to vary the number of web servers with relative ease and to see the
resulting effect on the properties of the system. Unfortunately, the constructs
provided in the PRISM modeling language force us to hard code this informa-
tion into the model. A preprocessor is available to allow the architect to specify
such variables of the system and automatically generate the model. However,
these variables are not accessible from the automated analysis provided by the
PRISM model checker, preventing the architect from easily understanding the
effects of varying these characteristics of the system.

In PRISM we found an effective means for specifying and analyzing archi-
tectural models with uncertainty. A set of limitations was identified in the

13

approach, but it is our belief that these limitations do not outweigh the signifi-
cant benefits obtained from modeling and reasoning about architectural models
in this way.

7 Related Work

Three areas of existing work are closely related to the research presented in this
paper: architectural modeling and analysis, probabilistic verification, and tools
for analysis of system qualities.

7.1 Architectural Modeling and Analysis

Over the past decade architectural design has become an accepted component of
most software development processes and formal models of software architecture
allow for the analysis of system-level behavior. Unfortunately, research has not
produced general techniques to model or reason about uncertainty. While there
exist examples of architec-ture-based analyses for specific quality attributes in
certain styles (e.g., queuing-theoretic analysis in message-queue systems), these
are not generally applicable to the architectural design problem in general.

Some architectural modeling formalisms (such as [AG97a, MEK95]) do, how-
ever, support nondeterminism in behavioral specifications in order to achieve a
high level of abstraction, and to permit later refinement of behavior. However,
such specifications leave uncertainty completely unconstrained, and hence any
analyses are unnecessarily conservative. Moreover, they are incapable of an-
swering questions related to the expected outcome of the system-wide behavior,
given knowledge about the expected behavior of the components.

7.2 Probabilistic Verification

The last two decades have seen significant development in formal specification
languages, logics, and tools for reasoning about probabilistic systems. Specifica-
tion languages based on probabilistic process algebras (e.g., PEPA [Hil96] and
the stochastic π-calculus [Pri95]), probabilistic automata [Seg95], and proba-
bilistic extensions of guarded commands [MM04] make it possible to explicitly
associate probabilities with system transitions. Some specification languages
also retain standard nondeterministic choice, making it possible to abstract
over unknown probabilities. Probabilistic extensions of temporal logics (e.g.,
PCTL [HJ94], CSL [BKH99], and QPTL [MM04]) have enabled specification of
rich properties for such system.

Probabilistic model-checkers (such as Prism [KNP02], MRMC [KKZ05], E-
MC2 [HKMKS00], and PEPA Workbench [GH94]) have improved considerably
both with respect to their power (as measured by the size of the models they
can handle) and expressivity of logics they support. These tools have been
successfully used to verify randomized distributed algorithms (e.g., Byzantine

14

Agreement, and randomized leader election protocols), communication and mul-
timedia protocols (e.g., the Firework contention resolution protocol), security
protocols (e.g., probabilistic contract signing), biological processes, etc. Recent
work on theorem-proving-based verification of probabilistic systems includes for-
malization of expectation transformers [MM04] in HOL [HMM05, Cel06] and B
[Hoa05].

7.3 Tools for Analysis of System Properties

A large number of special-purpose tools have been developed for analysis of
system properties such as reliability, performance, and security. Some of these
incorporate uncertainty into their analyses. Typically each of these tools re-
quires its own kind of model. For example, the Mbius suite of tools supports a
variety of analyses including reliability, availability, security, and performance
based on a multi-model approach [DCC+02]. However, such efforts do not
specifically address analysis of software architectures (although many of them
could potentially be adapted to architectural models). The advantage of center-
ing analysis on architectural models is that it provides a single locus for design
decisions and tradeoffs, as well as providing a high level of abstraction with
which to understand complex systems.

8 Conclusion and Future Work

In this paper, we outlined an approach to architectural modeling in which un-
certainty appears as a first-class specification mechanism. Such uncertainty goes
beyond traditional nondeterminism insofar as it provides quantifiable measures
that can be analyzed to determine a wide variety of stochastic properties of a
system. The PRISM model checker automates many of the tasks required by
this form of analysis and provides an effective means for reasoning about these
systems and their behavior.

This work represents a starting point for further research into probabilistic-
based architectural specification and analysis. However, to bring this line of
research into practice, a number of missing ingredients will need to be investi-
gated.

First, although one can map an architectural model into PRISM as a set of
interacting components, where communication is determined by synchronized
events (as we have illustrated above), it is not clear how best to model the richer
vocabulary of software architecture found in modern architecture description
languages [MT00], such as [GMW00, SAE], and standard modeling languages,
such as UML [OMG]. In particular, how should one represent connectors, ports,
hierarchical descriptions, and variability points? For example, in [AG97b] check-
ing for compatibility between the ports of a component and the expectations of
a connector to which it is attached is done via a kind of refinement check. What
is the analog in a probabilistic setting?

15

Second, it is not clear how to specify models of dynamically changing ar-
chitectures. In many modern systems architectures must adapt their structure
based on environmental conditions, faults, or opportunities for run-time opti-
mization. Such systems require a specialized form of analysis and reasoning,
not directly supported by the PRISM model checker.

Finally, as noted earlier, finding good ways to manage the tractability of
models for model checking is key to scaling the technology to realistic systems.

9 Acknowledgements

This work is supported in part by the Office of Naval Research (ONR), United
States Navy, N000140811223 as part of the HSCB project under OSD, by the
US Army Research Office (ARO) to CyLab under grant numbers DAAD19-02-
1-0389 and DAAD19-01-1-0485, and by the National Science Foundation under
Grants No. CNS-084701 and IIS-0534656. The views and conclusions described
here are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the ONR, the ARO, the NSF,
the US government, or any other entity.

References

[AG97a] Robert Allen and David Garlan. A formal basis for architec-
tural connection. ACM Transactions on Software Engineering and
Methodology, 6(3):213–249, July 1997.

[AG97b] Robert Allen and David Garlan. A formal basis for architec-
tural connection. ACM Transactions on Software Engineering and
Methodology, July 1997.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design, 15:7–48, 1999.

[BDH03] Luis Andre Barroso, Jeffrey Dean, and Urs Holzle. Web search for
a planet: The google cluster architecture. IEEE Micro, 23(2):22–
28, March-April 2003.

[BKH99] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Ap-
proximative symbolic model checking of continuous-time Markov
chains. CONCUR99 Concurrency Theory. Springer Berlin / Hei-
delberg, 1999.

[CBB+03] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Stafford. Documenting
Software Architectures: Views and Beyond. Addison-Wesley, 2003.

16

[Cel06] Orieta Celiku. Mechanized Reasoning for Dually-Nondeterministic
and Probabilistic Programs. PhD thesis, Turku Centre for Com-
puter Science Technical Report 77, 2006.

[CGS07] Orieta Celiku, David Garlan, and Bradley Schmerl. Augment-
ing architectural modeling to cope with uncertainty. International
Workshop on Living with Uncertainty, November 2007.

[DCC+02] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly,
Salem Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G.
Webster. The möbius framework and its implementation. IEEE
Trans. Softw. Eng., 28(10):956–969, 2002.

[GH94] Stephen Gilmore and Jane Hillston. The PEPA workbench: a tool
to support a process algebra-based approach to performance mod-
elling. In Proceedings of the 7th international conference on Com-
puter performance evaluation : modelling techniques and tools,
pages 353–368, Secaucus, NJ, USA, 1994. Springer-Verlag New
York, Inc.

[GMW00] David Garlan, Robert T. Monroe, and David Wile. Acme: Archi-
tectural description of component-based systems. In Gary T. Leav-
ens and Murali Sitaraman, editors, Foundations of Component-
Based Systems, page 47. Cambridge University Press, 2000.

[Hil96] Jane Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about
time and probability. Formal Aspects of Computing, 6(5):512–535,
September 1994.

[HKMKS00] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser,
and Markus Siegle. A markov chain model checker. In TACAS
’00: Proceedings of the 6th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 347–
362, London, UK, 2000. Springer-Verlag.

[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David
Parker. Prism: A tool for automatic verification of probabilistic
systems. Proc. 12th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’06),
3920:441–444, March 2006.

[HMM05] Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic
guarded commands mechanized in HOL. Theor. Comput. Sci.,
346(1):96–112, 2005.

17

[Hoa05] Thai Son Hoang. The Development of a Probabilistic B-Method
and a Supporting Toolkit. PhD thesis, The University of New
South Wales, 2005.

[KKZ05] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. A
markov reward model checker. In QEST ’05: Proceedings of the
Second International Conference on the Quantitative Evaluation of
Systems, page 243, Washington, DC, USA, 2005. IEEE Computer
Society.

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM:
Probabilistic Symbolic Model Checker. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2002.

[KNP04] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism
2.0: A tool for probabilistic model checking. Quantitative Evalua-
tion of Systems, pages 322–323, September 2004.

[MEK95] Jeff Magee, Susan Eisenbach, and Jeff Kramer. Modelling darwin
in the π-calculus. Theory and Practice in Distributed Systems,
938:133–152, June 1995.

[MM04] Annabelle McIver and Carroll Morgan. Abstraction, Refinement
And Proof For Probabilistic Systems (Monographs in Computer
Science). SpringerVerlag, 2004.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and
comparison framework for software architecture description lan-
guages. IEEE Transactions on Software Engineering, 26(1):70–93,
January 2000.

[OMG] OMG. Unified modeling language. URL: http://www.uml.info/.

[Pri95] Corrado Priami. Stochastic π-calculus. Computer Journal,
38(7):578–589, 1995.

[SAE] SAE. SAE AADL information site. URL: http://www.aadl.info/.

[Seg95] Roberto Segala. Modelling and Verification of Randomized Dis-
tributed RealTime Systems. PhD thesis, Massachusetts Institute
of Technology, 1995.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

10 Appendix

10.1 Full PRISM Model

// Web Sever Cluster

18

// Author: Harrison Strowd

// This model depicts a Web Server Cluster for web searches. It
// consists of a Master Load Balancing Server (MLBS module),
// and a set of Web Servers (WSx modules). Search queries are
// recognized by the Master Load Balancing Server (MLBS),
// which delegates them to an arbitrary available Web Server
// (WS). The WS then processes the request and returns the
// results to the MLBS. In actuality there is a lower level
// structure that exists below the WS that enables it to
// handle the query in a timely manner, but for the purposes
// of this model, we have chosen to abstract that complexity
// out of the model. This model allows WSs to fail at a
// specified rate. This model also simulates the repair of WSs
// that failed.

ctmc
// For the purposes of this model, 1 time unit will equate to 1
// second

// -------------------------
// Model Properties
// -------------------------

// The number of web servers at the disposal of the master load
// balancing server
const int NUM_WS = 3;

// The maximum number of requests that can be queued in any stage
// (accepted, being serviced, or service completed) of the load
// balancing server.
const int NUM_MLB_REQ = 8;

// The maximum number of requests that can be queued in any stage
// (assigned or service completed) of the web server.
const int NUM_REQS_PER_WS = 3;

// -------------------------
// Action Rates
// -------------------------

// The rate at which requests are received by the load balancing
// server.
// An action with a rate of 50 occurs every .02 seconds

19

const double GetReq_RATE = 50;

// The rate at which requests will be returned to the user, once
// they have been processed by a WS.
// An action with a rate of 33 occurs every .03 seconds
const int ReturnReq_RATE = 33;

// The rates at which requests are assigned to or returned from
// a WS.
// An action with a rate of 25 occurs every .04 seconds
// An action with a rate of 50 occurs every .02 seconds
const double assignReqtoWS1_RATE = 25;
const double returnReqfromWS1_RATE = 50;

const double assignReqtoWS2_RATE = 25;
const double returnReqfromWS2_RATE = 50;

const double assignReqtoWS3_RATE = 25;
const double returnReqfromWS3_RATE = 50;

// NOTE: The probability of failure and repair are far higher
// than reality, but allow us to see these actions in
// simulation and understand how they effect the properties
// of the model.

// The probability that a WS will fail in any given time unit
// An action with a rate of .01 occurs every 100 seconds
const double wsFailure_RATE = .01;

// The probability that a WS will be repaired at any given time
// unit.
// An action with a rate of .2 occurs every 5 seconds
const double wsRepair_RATE = .2;

// The rates at which the WSs can process a user’s request
// An action with a rate of 5 occurs every .2 seconds
const double WS1ProcessRequest_RATE = 5;
const double WS2ProcessRequest_RATE = 5;
const double WS3ProcessRequest_RATE = 5;

// --
// The Master Load Balancing Server
// --

20

module MLBS

// --
// State keeping track of the WSs
// --

// Tracks the activity of each of the web servers:
// - a value of 0 indicates that the specified web server is
// not available
// - a value of 1 indicates that the specified web server is
// available
ws1IsActive: [0..1] init 1;
ws2IsActive: [0..1] init 1;
ws3IsActive: [0..1] init 1;

// Tracks the number of request that have been assigned to each
// WS. This information is required to ensure that when a WS
// fails the requests that were assigned to it are reassigned
// to an active WS.
ws1Reqs: [0..NUM_REQS_PER_WS] init 0;
ws2Reqs: [0..NUM_REQS_PER_WS] init 0;
ws3Reqs: [0..NUM_REQS_PER_WS] init 0;

// --
// State keeping track of the users’ requests
// --

// Tracks the number of requests that have been submitted to
// the MLBS. The MLBS does not keep track of where a request
// comes from or where it is returned to. In actuality it
// would need to keep track of which users submitted which
// queries, but this is a detail that I have abstracted away
// from this model.
reqs: [0..NUM_MLB_REQ] init 0;

// Tracks the number of requests that have been assigned to web
// servers.
servicing: [0..NUM_MLB_REQ] init 0;

// Tracks the number of requests that have been serviced and
// are waiting to be returned to the user.
serviced: [0..NUM_MLB_REQ] init 0;

21

// ---------------------------------
// Handling a request
// ---------------------------------

// Gets a search request from the user
[getReq] (reqs < NUM_MLB_REQ) ->
GetReq_RATE: (reqs’ = reqs + 1);

// Assigns the user’s request to WS1, if available.
[assignReqtoWS1]
(servicing < NUM_MLB_REQ) &
(reqs > servicing) &
(ws1Reqs < NUM_REQS_PER_WS) &
(ws1IsActive = 1) ->
assignReqtoWS1_RATE :
(servicing’ = servicing + 1) &
(ws1Reqs’ = ws1Reqs + 1);

// Gets a user’s request back from WS1 after it has been
// serviced.
[returnReqfromWS1]
(serviced < NUM_MLB_REQ) &
(servicing > serviced) &
(ws1Reqs > 0) &
(ws1IsActive = 1) ->
(serviced’ = serviced + 1) &
(ws1Reqs’ = ws1Reqs - 1);

// Assigns the user’s request to WS2, if available.
[assignReqtoWS2]
(servicing < NUM_MLB_REQ) &
(reqs > servicing) &
(ws2Reqs < NUM_REQS_PER_WS) &
(ws2IsActive = 1) ->
assignReqtoWS2_RATE :
(servicing’ = servicing + 1) &
(ws2Reqs’ = ws2Reqs + 1);

// Gets a user’s request back from WS2 after it has been
// serviced.
[returnReqfromWS2]
(serviced < NUM_MLB_REQ) &
(servicing > serviced) &
(ws2Reqs > 0) &
(ws2IsActive = 1) ->
(serviced’ = serviced + 1) &

22

(ws2Reqs’ = ws2Reqs - 1);

// Assigns the user’s request to WS3, if available.
[assignReqtoWS3]
(servicing < NUM_MLB_REQ) &
(reqs > servicing) &
(ws3Reqs < NUM_REQS_PER_WS) &
(ws3IsActive = 1) ->
assignReqtoWS3_RATE :
(servicing’ = servicing + 1) &
(ws3Reqs’ = ws3Reqs + 1);

// Gets a user’s request back from WS3 after it has been
// serviced.
[returnReqfromWS3]
(serviced < NUM_MLB_REQ) &
(servicing > serviced) &
(ws3Reqs > 0) &
(ws3IsActive = 1) ->
(serviced’ = serviced + 1) &
(ws3Reqs’ = ws3Reqs - 1);

// Returns the results from the search request to the user.
[returnReq]
(reqs > 0) &
(servicing > 0) &
(serviced > 0) ->
ReturnReq_RATE: (serviced’ = serviced - 1) &
(servicing’ = servicing - 1) &
(reqs’ = reqs - 1);

// ---------------------------------
// Web Server Failures
// ---------------------------------

// WS1 failure
[ws1failure]
(servicing >= ws1Reqs) &
(ws1IsActive = 1) ->
(reqs’ = reqs) &
(servicing’ = servicing - ws1Reqs) &
(ws1Reqs’ = 0) &
(ws1IsActive’ = 0);

23

// WS2 failure
[ws2failure]
(servicing >= ws2Reqs) &
(ws2IsActive = 1) ->
(reqs’ = reqs) &
(servicing’ = servicing - ws2Reqs) &
(ws2Reqs’ = 0) &
(ws2IsActive’ = 0);

// WS3 failure
[ws3failure]
(servicing >= ws3Reqs) &
(ws3IsActive = 1) ->
(reqs’ = reqs) &
(servicing’ = servicing - ws3Reqs) &
(ws3Reqs’ = 0) &
(ws3IsActive’ = 0);

// ---------------------------------
// Web Server Repairs
// ---------------------------------

// GWS1 repair
[ws1repair]
(ws1IsActive = 0) ->
(ws1IsActive’ = 1);

// GWS2 repair
[ws2repair]
(ws2IsActive = 0) ->
(ws2IsActive’ = 1);

// GWS3 repaire
[ws3repair]
(ws3IsActive = 0) ->
(ws3IsActive’ = 1);

endmodule

// ------------------------------------
// A Web Server

24

// ------------------------------------

module WS1

// Tracks of the number of requests currently assigned to WS1
ws1NumReqs: [0..NUM_REQS_PER_WS] init 0;

// Tracks of the number of requests that WS1 has finished
// servicing, but not yet returned to the MLBS
ws1ReqsServiced: [0..NUM_REQS_PER_WS] init 0;

// -------------------------------------
// Handling a Request
// -------------------------------------

// Assigns a request to WS1. This can only occur if WS1 does
// not have the maximum number of requests assigned to it.
[assignReqtoWS1]
(ws1NumReqs < NUM_REQS_PER_WS) ->
(ws1NumReqs’ = ws1NumReqs + 1);

// Signifies WS1 processing a user’s request
[ws1ProcessRequest]
(ws1NumReqs > 0) &
(ws1ReqsServiced < ws1NumReqs) ->
WS1ProcessRequest_RATE:
(ws1ReqsServiced’ = ws1ReqsServiced + 1);

// Returns the result for a user’s query to the MLBS
[returnReqfromWS1]
(ws1NumReqs > 0) &
(ws1ReqsServiced > 0)->
returnReqfromWS1_RATE:
(ws1NumReqs’ = ws1NumReqs - 1) &
(ws1ReqsServiced’ = ws1ReqsServiced - 1);

// ---------------------------------
// Web Server Failure
// ---------------------------------

// WS1 failure
[ws1failure]
true ->
wsFailure_RATE: (ws1NumReqs’ = 0) &

25

(ws1ReqsServiced’ = 0);

// ---------------------------------
// Web Server Repair
// ---------------------------------

// WS1 repair
[ws1repair]
true ->
wsRepair_RATE : true;

endmodule

// Replicating WS1’s module to include more WSs
module WS2 = WS1
[
ws1NumReqs = ws2NumReqs,
ws1ReqsServiced = ws2ReqsServiced,
ws1ProcessRequest = ws2ProcessRequest,
assignReqtoWS1 = assignReqtoWS2,
returnReqfromWS1 = returnReqfromWS2,
returnReqfromWS1_RATE = returnReqfromWS2_RATE,
ws1failure = ws2failure,
ws1repair = ws2repair

]
endmodule

module WS3 = WS1
[
ws1NumReqs = ws3NumReqs,
ws1ReqsServiced = ws3ReqsServiced,
ws1ProcessRequest = ws3ProcessRequest,
assignReqtoWS1 = assignReqtoWS3,
returnReqfromWS1 = returnReqfromWS3,
returnReqfromWS1_RATE = returnReqfromWS3_RATE,
ws1failure = ws3failure,
ws1repair = ws3repair

]
endmodule

10.2 PRISM Rewards

// Tracks the total time units elapsed

26

rewards "numTimeUnits"
true : 1;

endrewards

// Identifies the number of WSs failures that occur in the system
rewards "numWSFailures"
[ws1failure] true : 1;
[ws2failure] true : 1;
[ws3failure] true : 1;

endrewards

// Identifies the total amount of time that any WS is not active
rewards "wsDownTime"
(ws1IsActive = 0): 1;
(ws2IsActive = 0): 1;
(ws3IsActive = 0): 1;

endrewards

// Identifies the amount of time all WSs are down simultaneously
rewards "allWSAreDown"
(ws1IsActive = 0) &
(ws2IsActive = 0) &
(ws3IsActive = 0): 1;

endrewards

// Rewards used for Quality Attribute properties:

// Tracks the number of requests that are currently queued at the
// MLBS
rewards "numReqsQueued"
(reqs >= (ws1Reqs + ws2Reqs + ws3Reqs)) :
(reqs - (ws1Reqs + ws2Reqs + ws3Reqs));

endrewards

// Tracks the number of requests that have been assigned to WSs
rewards "numReqsAssigned"
true : (ws1Reqs + ws2Reqs + ws3Reqs);

endrewards

// Tracks the number of WSs that have a request assigned to them
rewards "numWSsWorking"
(ws1Reqs > 0) : 1;
(ws2Reqs > 0) : 1;
(ws3Reqs > 0) : 1;

endrewards

27

// Tracks the total amount of time that all requests have spent
// in the system
rewards "totTimeForAllReqs"
true : reqs + servicing + serviced;

endrewards

// Tracks the total number of requests that have been successfully
// serviced by the system
rewards "numReturnedReqs"
[returnReq] true : 1;

endrewards

10.3 PRISM Properties

label "NoActiveWSs" =
(ws1IsActive = 0) &
(ws2IsActive = 0) &
(ws3IsActive = 0);

label "UnevenLoad" =
((ws1Reqs > 1) & ((ws2Reqs = 0) | (ws3Reqs = 0))) |
((ws2Reqs > 1) & ((ws1Reqs = 0) | (ws3Reqs = 0))) |
((ws3Reqs > 1) & ((ws1Reqs = 0) | (ws2Reqs = 0)));

// In the long run, what is the probability that at least 80% of
// the servers are up?
S=? [((ws1IsActive + ws2IsActive + ws3IsActive) / NUM_WS > .8)]

// In the long run, what is the probability that all WSs are down?
S=? ["NoActiveWSs"]

// In the long run, what is the average number of requests that
// are waiting to be
// assigned to a WS?
R{"numReqsQueued"}=? [S]

// In the long run, what is the average number of requests that
// are assigned to a WS?
R{"numReqsAssigned"}=? [S]

// In the long run, what is the average number of WSs that are
// servicing a request? (This would vary from the number of
// requests if each WS could service more than one request at a
// time.)
R{"numWSsWorking"}=? [S]

// In the long run, what is the probability that the MLBS’s

28

// request queue is full?
S=? [reqs = NUM_MLB_REQ]

// In the long run, what is the probability that one server has
// more than 1 request while another server has 0 requests?
S=? ["UnevenLoad"]

// What is the average time required to process a single request?
(R{"totTimeForAllReqs"}=? [S]) / (R{"numReturnedReqs"}=? [S])

10.4 PRISM Example Property Analogies

The following are the sample PRISM properties found on the PRISM website 8

and their analogs in terms of the Web Server example:
8The full explanation of the sample properties can be found at

http://www.prismmodelchecker.org/manual/PropertySpecification/Introduction.

29

PRISM Example: Google Web Server analog:
P>=1 [F terminate] P>=1 [F “allWSAreDown”]
The algorithm eventually terminates
successfully with probability 1

Eventually all WSs in the system will
be down simultaneously with proba-
bility 1

“init” => P<0.1 [F<=100
num errors > 5]

“ws1Down” => P>.85 [F<=20
ws1IsActive=1]

From an initial state, the probability
that more than 5 errors occur within
the first 100 time units is less than
0.1

From the state in which WS1 is
down, the probability that it will
be repaired within the next 20 time
units is greater than .85

“down” => P>0.75 [!“fail” U[1,2]
“up”]

“ws1HasRequest” => P>.7
[!“ws1Down” U[1,5]
ws1ReqServiced=1]

When a shutdown occurs, the proba-
bility of system recovery being com-
pleted in between 1 and 2 hours
without further failures occurring is
greater than 0.75

When WS1 is assigned a query, the
probability of it servicing that query
in between 1 and 5 time units with-
out failing is greater than .7

S<0.01 [num sensors < min sensors
]

S<.45 [(ws1NumReqs +
ws2NumReqs + ws3NumReqs)>5]

In the long-run, the probability that
an inadequate number of sensors are
operational is less than 0.01

In the long run, the probability that
at least 5 requests have been assigned
to the WSs is greater that .45

P=? [!proc2 terminate U
proc1 terminate]

P=? [(gws1NumReqs=0) U
”ws1Down”]

The probability that process 1 termi-
nates before process 2 does

What is the probability that WS1
fails without ever receiving a request

Pmax=? [F<=T messages lost >
10]

Pmax=? [F<=T “ws1HasQuery”]

The maximum probability that more
than 10 messages have been lost by
time T

What is the maximum probability
that WS1 has been assigned a query
by time T (because there is no non-
determinism in our model, this does
not provide a different result from P)

S=? [queue size / max size > 0.75] S=? [(ws1Req + ws2Req +
ws3Req)>=2]

The long-run probability that the
queue is more than 75% full

What is the long run probability that
two or more of the WSs have requests
assigned to them

10.5 Mapping of Quality Attributes to PRISM Properties

The following is a more complete mapping of the relevant quality attributes, in
terms of the properties to be analyzed about the model, to the PRISM structure

30

used to analyze them. For those that are support by PRISM, we have provided
the appropriate structure for analyzing them.

Quality
Attribute:

Property: PRISM Analysis:

Availability
In the long run, what is the
probability that a request will
not be serviced?

Depends on the circum-
stances that result in a
request no being serviced.

In the long run, what is the
probability that the MLBS’s
request queue is full?

S=? [reqs =
NUM MLB REQ]

How do changes in the rate of
requests effect the probability
of a request being lost?

Depends on the circum-
stances that result in a
request no being serviced.

Reliability

In the long run, what is the
probability that all WSs are
down?

S=? [“NoActiveWSs”]

In the long run, what is the
probability that at least 80%
of the servers are up?

S=? [(“NumActiveWSs” /
NUM WS > .8)]

What is the highest rate of
WS failure that will not re-
sult in more than 1% of the
requests being lost?

Depends on what is means for
a request to be lost.

What is the highest rate of
WS failure that will not result
in all WSs being down more
than 1% of the time?

Experiment: Varying
wsFailure RATE and
checking [S=? [
“NoActiveWSs”]]

Performance

What is the average time re-
quired to process a single re-
quest?

(R“totTimeForAllReqs”=? [
S])
/(R“numReturnedReqs”=? [
S])

In the long run, what is the
average number of requests
that are waiting to be as-
signed to a WS?

R“numReqsQueued”=? [S]

In the long run, what is the
average number of requests
that are assigned to a WS?

R“numReqsAssigned”=? [S
]

In the long run, what is the
average number of WSs that
are servicing a request? (This
would vary from the number
of requests if each WS could
service more than one request
at a time.)

R“numWSsWorking”=? [S]

31

Performance
In the long run, what is the
probability that one server
has more than 1 request while
another server has 0 requests?
(This is currently 0.0 because
we restrict GWSs to a maxi-
mum of 1 requests at a time.)

S=? [“UnevenLoad”]

How do changes in the rate of
WS failures effect the latency
of requests?

Experiment: Varying
wsFailure RATE and
checking
[(R“totTimeForAllReqs”=? [
S])
/(R“numReturnedReqs”=? [
S])]

What effect does allowing
servers with 0 requests to
pull requests away from over-
loaded servers have on the la-
tency of the system?

This would require an exten-
sion to the model

Cost
How many servers would you
need to decrease the proba-
bilty that all WSs are down
to below 1%?

Experiment: Varying
NUM WS and checking [S=?
[“NoActiveWSs”]]

What is the average amount
of power consumed by the
system?

Outside of the scope of this
model

How do changes in the rate of
requests effect the amount of
power consumed by the sys-
tem?

Outside of the scope of this
model

What is the maximum rate of
requests the system can han-
dle while keeping the average
latency below 1 second?

Experiment: Varying
GetReq RATE and checking
[(R“totTimeForAllReqs”=? [
S])
/(R“numReturnedReqs”=? [
S])

Scalability What is the maximum rate of
requests the system can han-
dle without resulting in more
than 1% of the requests being
lost?

Depends on what is means for
a request to be lost.

32

